Normal structure of Heart Heart Failure

- Weight
 - ♀: 250 to 300 gm
 - ♂: 300 to 350 gm
- Thickness of free wall

$$R.V = 0.3 - 0.5 cm$$

$$L.V = 1.3 - 1.5 \text{ cm}$$

- - 1. Hypertrophy: ↑ weight/ wall thickness
 - 2.Dilation: ↑ chamber size

M/E

- Myocardium- specialized muscle cells called cardiac myocytes arranged in spiral/ circumferential orientation
- Contain ↑ mitochondria; 23% of cell vol vs 2% in skeletal muscle cells; complete dependence of cardiac muscle on aerobic respiration
- Systole: contraction of ventricular muscle
- Diastole: relaxation of ventricular muscle

- Sarcomere: functional intracellular contractile unit of cardiac muscle comprising thick myosin and thin actin filaments
- Length: 1.6- 2.2 µm; shorter lengths have overlap of actin & myosin filaments with reduction in contractile force, longer sarcomere lengths enhance contractility (Frank Starling mechanism)→ moderate dilation of heart during diastole → ↑ contraction during systole
- Myocytes comprise 25% of total no. of cells; 90% of myocardial volume
- Atrial myocytes are smaller, store atrial natriuretic peptide, secreted under atrial distension
- ANP induces vasodilation, diuresis, natriuresis

Cardiac conduction system

- Excitory and conducting myocytes involved in maintaining rate and rhythm of the heart
- SA (sino-atrial) node: present at junction of right atrial appendage and SVC
- AV (atrio-ventricular) node: in RA near atrial septum
- Bundle of His: from RA to summit of ventricular septum
- Right and left bundle branches

Blood Supply

- Coronary A run across the external surface of the heart as epicardial A and penetrate myocardium as intramural A →arterioles →capillary network; one vessel next to each cardiac muscle
- 3 major epicardial A
 - 1. Left ant descending (LAD)
 - 2. Left circumflex (LCX)
 - 3. Right coronary (RCA)

- LAD: apex, ant wall of LV, ant 2/3 of AV septum
- LCX: lat wall of LV
- RCA: RV free wall, postero basal wall of LV, post 1/3 of septum
- Anastomosis b/w these vs collateral circulation, enlarge in ischemia
- If collateral flow is inadequate, subendocardium is most susceptible to ischemic damage

Coronary Arteries

Valves

- 4 cardiac valves: Tricuspid, Pulmonary, Mitral, Aortic
- Ability of valves to maintain unobstructive unidirectional forward flow depends on their mobility & pliability of leaflets & cusps
- Lined by endothelium;
- a dense collagenous core (fibrosa)
- loose connective tissue (spongiosa)
- layer rich in elastin (ventricularis)

Heart Failure

- Congestive heart failure (CHF): heart is unable to pump blood at a rate sufficient to meet metabolic demands of tissues
- Common, recurrent, poor prognosis
- Clinical synd arising from poor perfusion of organs (forward ischemic effects) + congestive effects of failing circulation (backward flow of blood)

Maintenance of arterial pressure & perfusion of various organs

- Myocardial hypertrophy:
 † mass of contractile tissue
- Activation of neurohormonal systems:
- 1. Release of nor-epinephrine: ↑rate, contractility
- 2. Activation of renin-angiotensin-aldosterone system
- 3. Release of ANP

Heart Failure

- Forward faillure; diminished cardiac output Backward failure: damming back of blood in venous system
- Left sided heart failure
 Right sided heart failure

Left Sided Heart Failure

- Systolic dysfunction i.e deterioration of myocardial contractile function
- Etiology:
- 1) Pump dysfunction
- Ischemic heart disease
- Myocarditis
- Cardiomyopathies
- 2) Increased workload on heart (pressure overload)
- Systemic hypertension
- Aortic and mitral valvular stenosis
- Chronic lung disease

Left Sided Heart Failure

Volume overload

- Valvular insufficiency
- Severe anemia
- Thyrotoxicosis
- 3) Diastolic dysfunction: inability of the chamber to relax, expand and fill during diastole
 - myocardial fibrosis
 - amyloid deposition
 - constrictive pericarditis
 - LV hypertrophy

Normal

The ventricles fill normally with blood.

The ventricles pump out about 60% of the blood.

Systolic Dysfunction

The enlarged ventricles fill with blood.

The ventricles pump out less than 40 to 50% of the blood.

Diastolic Dysfunction

The stiff ventricles fill with less blood than normal.

The ventricles pump out about 60% of the blood, but the amount may be lower than normal.

Morphology (Forward effects /Ischemic)

- Kidneys:
- ↓ renal perfusion → activation of RAA system → retention of salt & water → expansion interstitial fluid and blood vol →worsens pulmonary edema
- severe perfusion deficit → impairment of renal function →↓ excretion of nitrogenous products → accumulation of nitrogenous waste products in blood (prerenal azotemia)
- Brain: affected in advanced CHF
 - Hypoxic encephalopathy: irritability, loss of attention span, restlessness and stupor

Morphology (Backward effect)

Lungs: ↑ pressure in pulm veins → ↑ pressure in arteries & capillaries → pulm congestion & edema, heavy wet lungs

Micro: perivascular & interstitial transudate: Kerley B lines on X-ray

- Edematous widening of interalveolar septae
- Accumulation of fluid in alveolar space
- Heart failure cells

- Dyspnea: earliest and cardinal complaint, ↑ on exertion
- Orthopnea: breathlessness on lying down; relieved on sitting/ standing
- Paroxysmal nocturnal dyspnea: attacks of extreme dyspnea bordering on suffocation, usually occuring at night, assoc with cough

Right Sided Heart Failure

- Pure Rt heart failure is rare; occurs most often with chronic severe pulmonary HT; called cor pulmonale
- Usually secondary consequence of Lt side heart failure leading to ↑ pulmonary circulatory pressure
- Rt ventricle is burdened by pressure overload due to ↑ resistance within pulmonary circulation

Morphology (Backward effects)

Liver & portal system:
 † size & wt (congestive hepatomegaly)

M/E: Passive congestion→ congested red centres of lobules with centrilobular necrosis, surrounded by paler, fatty peripheral regions

- Long standing RHF → central fibrosis →cardiac cirrhosis/ sclerosis
- Congestive splenomegaly: 300-500gm, tense
 M/E: marked sinusoidal dilatation
- Ascites: transudate in peritoneal cavity
- Bowel wall: edema, interfere wit absorption of nutrients

- Kidneys: ↑renal congestion: RHF > LHF
 — more fluid retention, peripheral edema & prerenal azotemia
- Subcutaneous tissue: peripheral edema of dependant portions of the body or generalized massive edema (anasarca)
- Pleural & pericardial spaces: accumulation of fluid
- Brain: venous congestion, hypoxic injury

Cardiac Hypertrophy

- Increase in size and weight of myocardium
- D/t increase pressure/ volume overload
- LV hypertrophy:
 - 1. Systemic HT
 - 2. Aortic stenosis
 - 3. Mitral regurgitation
 - 4. Coarctation
- RV hypertrophy
 - 1. Pulmonary stenosis
 - 2. Tricuspid insufficiency
 - 3. Chronic lung dis

Morphology

Concentric:

- hypertrophy without dilatation; lumen is smaller than normal
- LV wall thickness: > 1.5 2 cm

Eccentric:

- associated with dilatation; lumen greater
- wall thinned; dilatation and hypertrophy of right heart as well
- wt > 500g

Micro: increase in fibre size, foci of degenerative changes and necrosis

Copyright © 2006 Nature Publishing Group Nature Reviews | Molecular Cell Biology

Cardiac Dilatation

Compensatory mechanism

Causes:

- Valvular insufficiency
- L to R shunt
- Cardiomyopathies
- Thyrotoxicosis

Hypertensive Heart disease

- Eccentric hypertrophy
- d/t Prolonged systemic Ht
- 2nd most common cause after ischemic heart dis
- Pts often have atherosclerosis
- Progressive ischemic heart dis
- Causes of death: Dissecting aneurysm
- Renal failure following arteriolar nephrosclerosis
- Cerebrovascular stroke

Cor pulmonale

- Right heart failure d/t disorder of lungs.
- RV dilatation or hypertrophy
- Acute cor pulmonale: massive pulmonary embolus
- Chronic cor pulmonale: chronic dis of lungs: chr emphysema, chr bronchitis, etc: heal by fibrosis: fibrosis around pulmonary vs: increase resistance: pressure overload of rt heart: rt heart failure
- Morpho: increase thickness of vs wall upto 1 cm with dilatation of chamber.

