Healing

- Body response to injury in an attempt to restore normal structure and function.
- Involves 2 processes:
 - Regeneration: healing takes place by proliferation of parenchymal cells, results in complete restoration of the original tissues.
 - requires intact C.T. scaffold e.g- hematopoietic system, epithelia of skin, GIT
 - Repair: healing takes place by proliferation of connective tissue elements, results in fibrosis and scarring.
 - e.g- incisional skin wounds, MI, constrictive pericarditis, cirrhosis

Tissue proliferative activity

Cell cycle

- G₁ (pre-synthetic)
- S (DNA synthesis)
- G₂ (pre- mitotic)
- M (mitotic)
- G₀

The Cell Cycle

Types of cells

- Labile (always dividing) cells:
 - Replace dying cells
 - Epithelia: skin, oral cavity, exocrine ducts, GIT, FGT, hematopoietic cells
- Stable (quiescent) cells:
 - Usually G₀ and low rate of division
 - Driven into G₁ and rapid proliferation
 - Liver, kidney, pancreas, endothelium, fibroblasts

Types of cells

- Permanent (non-dividing) cells:
 - Permanently removed from cell cycle
 - Irreversible injury leads only to scar
 - Nerve cells, myocardium, skeletal muscle

The Cell Cycle and Different Cell Populations

Growth Factors

- Very important in tissue repair.
- Actions:
 - stimulate cell division and proliferation
 - promote cell survival
- Epidermal growth factor (EGF)- Keratinocytes, fibroblasts
- Vascular endothelial growth factor (VEGF)-Angiogenesis
- Transforming growth factor (TGF)-Fibrogenesis
- Platelet-derived growth factor (PDGF)
 - Migration and proliferation of fibroblasts, smooth muscle, and monocytes

Repair

- Repair is the replacement of injured tissue by fibrous tissue. Two processes are involved in repair:
 - Granulation tissue formation
 - Contraction of wounds

Granulation Tissue Formation

- Granular and pink appearance of the tissue.
- Each granule corresponds histologically to proliferation of new small blood vessels and young collagen.

Phases in the formation of granulation tissue

- Phase of inflammation- Following trauma, blood clots at site of injury. There is acute inflammatory response with exudation of plasma, neutrophils and some monocytes within 24 hours.
- Phase of clearance- proteolytic enzymes liberated from neutrophils, and phagocytic activity of macrophages clear off the necrotic tissue, debris and red blood cells.
- Phase of in growth of granulation tissue- consists of 2 main processes:
 - angiogenesis or neovascularisation
 - fibrogenesis

Angiogenesis (neovascularisation)

- Formation of new blood vessels takes place by proliferation of endothelial cells
- Initially, proliferated endothelial cells are solid buds but within few hours develop lumen.
- Newly formed blood vessels are more leaky, accounting for oedematous appearance of granulation tissue.
- Soon, blood vessels differentiate into arterioles, venules and capillaries.
- Factors: VEGF, PDGF, TGF-b, FGF and surface integrins

Fibrogenesis

- Proliferation of fibroblasts.
- Myofibroblasts some of the fibroblasts have morphologic and functional characteristics of smooth muscle cells.
- Collagen fibrils begin to appear by about 6th day.
- As maturation proceeds, more and more of collagen is formed while the number of active fibroblasts and new blood vessels decreases.
 - Growth factors (TGF- β , PDGF, EGF, FGF)
 - Cytokines (IL-1, TNF- α)

Granulation tissue

Contraction of Wounds

- The wound starts contracting after 2-3 days and process is completed by the 14th day.
- The wound is reduced by approximately 80% of its original size.
- Mechanism of wound contraction
 - Dehydration
 - Contraction of collagen
 - Myofibroblasts- have features intermediate between those of fibroblasts and smooth muscle cells. Their migration into the wound area and their active contraction decreases the size of the defect.

Extracellular Matrix (ECM)

- ECM is the network that surrounds cells
- Two forms: interstitial matrix and basement membrane
- ECM provides support, adhesion substrate, reservoir for factors; protein components
 - Collagens: most common, 14 types
 - I-III: interstitial/fibrillar, most abundant
 - IV-VI: non-fibrillar, basement membranes
 - Adhesive glycoproteins: <u>e.g.</u>, Laminin, fibronectin, integrins which bind ECM components to each other, and to other cells
 - Proteoglycans: sugars linked to proteins; influence
 ECM permeability and structure

The Extracellular Matrix

Scar