Cellular events

Function of inflammation- deliver leukocytes at site of injury, activate them to perform functions in host defense

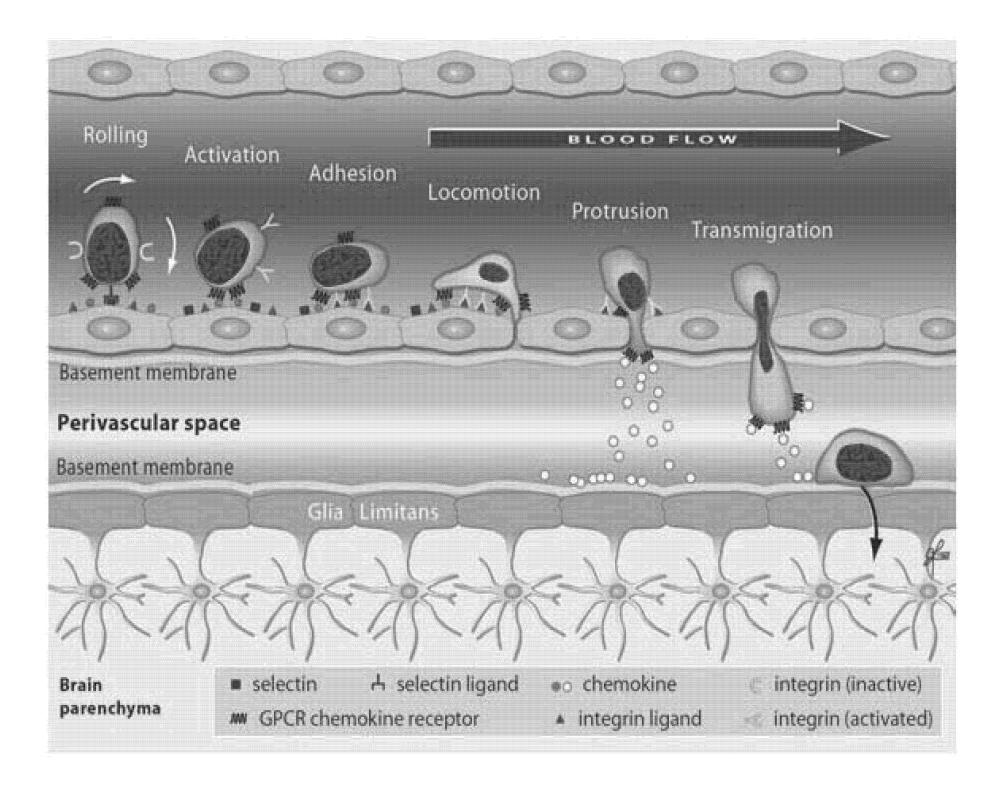
- Leukocyte extravasation
- Phagocytosis

Leukocyte extravasation

- In the lumen: margination, pavementing, rolling
- Emigration across endothelium
- Chemotaxis

In the lumen:

- Margination- Normally red and white cells flow intermingled in the center of the vessel separated from vessel wall by a clear cell-free plasmatic zone.
 - Due to slowing of the circulation, leucocytes fall out of the axial stream and come to periphery known as margination
- Pavementing- neutrophils close to vessel wall
- Rolling- neutrophils roll over endothelial cells
- Adhesion- binding to endothelial cells


Regulated by binding of complementary adhesion molecules on endothelial and leukocyte surfaces

Adhesion molecules

- Selectins
 - E- selectin
 - P- selectin
 - L- selectin
- Immunoglobulins ICAM-1, VCAM-1
- Integrins

Emigration

- neutrophils throw cytoplasmic pseudopods migrate through interendothelial spaces
- b/w endothelial cells & BM
- crosses BM by damaging it by collagenases
- escape of RBCs, diapedesis also occurs

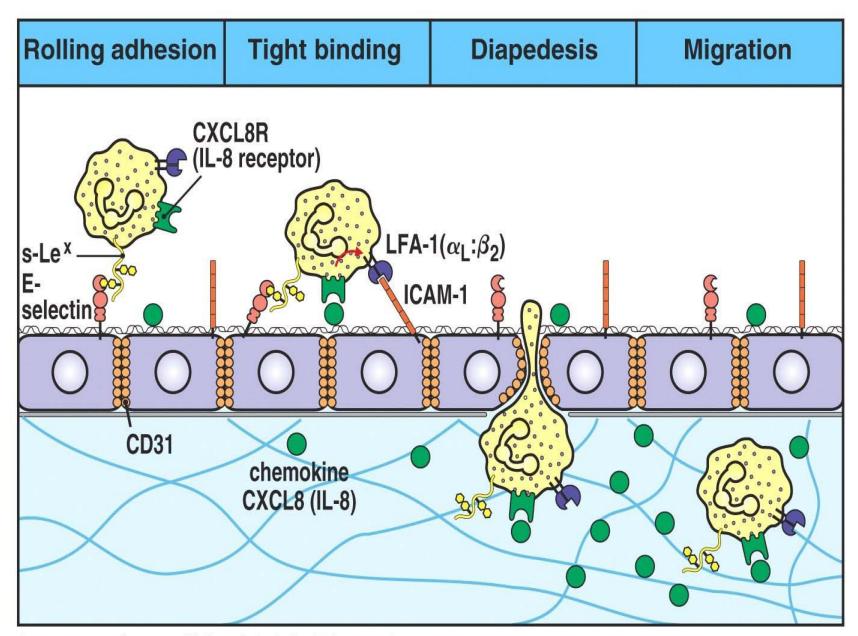


Figure 2-44 part 3 of 3 Immunobiology, 6/e. (© Garland Science 2005)

Chemotaxis

- Leukocytes emigrate towards site of injury or chemical gradient
- Chemotactic agents:
 - exogenous bacterial products
 - endogenous- complement system C5a, leukotrienes, cytokines
- Chemotactic agents bind to cell receptors on leukocytes → ↑ cytosolic Ca, phospholipases, activation of leukocytes
 - production of arachidonic acid metabolites
 - secretion of lysosomal enzymes
 - secretion of cytokines
 - modulation of leukocyte adhesion molecules

Phagocytosis

- Process of engulfment of solid particulate material by cells
- Polymorphs, macrophages
- 3 steps:
- 1. Recognition and attachment
- 2. Engulfment
- 3. Killing & degradation

Recognition & attachment

- Phagocytic cells attracted to bacteria by chemotactic factors released by bacteria & tissue proteins
- Microorganisms get coated by opsonins
 - 1) IgG opsonin is Fc fragment of IgG, naturally occuring Ab
 - 2) C3b opsonin- fragment of C3, generated by activation of complement pathway
 - 3) lectins- carbohydrate binding proteins

Engulfment

- opsonised particle ready for engulfment
- pseudopods due to activation of actin filaments
- phagocytic vacuole, breaks from cell membrane
- phagolysosome
- degranulation- preformed granule stored products are discharged

Killing or degradation

- Intracellular mechanisms
 - i) Oxidative bactericidal mechanism: oxidative damage by production of reactive oxygen metabolites which are principal killers of bacteria
 - $-O_2$, OH', HOCL, H_2O_2
 - A phase of $^{\uparrow}$ O₂ consumption- (respiratory burst) requires presence of NADPH oxidase

NADPH+2O<sub>2
$$\rightarrow$$</sub> 2O'₂ + NADP + H⁺
2O'₂ + 2H \rightarrow H₂O₂

- MPO dependent killing

$$H_2O_2 \rightarrow HOCL + H_2O$$

in presence of halides (cl', l', Br')

- MPO independent killing- macrophages lack MPO $H_2O_2 \rightarrow OH'$

In presence of Fe or O₂

- ii) Oxidative bactericidal mechanism by lysosomal granules: pre-formed granule stored products of neutrophils & macrophages are discharged into phagosomes
 - lysosomal hydrolases: protease, trypsinase, alkaline phosphatase, phospholipase
- iii) Non- oxidative bactericidal mechanism: Nitric Oxide mechanism- NO produced by endothelial cells, macrophages