BLEEDING DISORDERS (HAEMORRHAGIC DIATHESIS)

- Bleeding disorders or haemorrhagic diatheses are a group of disorders characterised by defective haemostasis with abnormal bleeding.
- Bleeding may be spontaneous in the form of small haemorrhages into the skin and mucous membranes (e.g. petechiae, purpura, ecchymoses)
- excessive external or internal bleeding following trivial trauma and surgical procedure (e.g. haematoma, haemarthrosis etc).

CAUSES

- Vascular abnormalities
- Platelet abnormalities
- Coagulation disorders
- Fibrinolytic defects
- Disseminated intravascular coagulation (DIC).

Investigation of Disordered Vascular Haemostasis

- 1. BLEEDING TIME
- 2. HESS CAPILLARY RESISTANCE TEST (TOURNI-QUET TEST)

BLEEDING TIME

- Based on the principle of formation of haemostatic plug following a standard incision on skin.
- Three methods:
- 1. Duke's method: ear lobe puncture
- 2. Ivy's method: 2-3 punctures on volar aspect of forearm with a lancet (Cutting depth- 2-2.5mm) under standardized venous pressure of 40mm Hg.
- 3. Template method: Larger cut, 6-9mm long and 1mm deep.
- The time the incision takes to stop bleeding is measured.
- Normal range is 3-8 minutes.

A prolonged bleeding time may be due to following causes:

- i) Thrombocytopenia.
- ii) Disorders of platelet function.
- iii) von Willebrand's disease.
- iv) Vascular abnormalities (e.g. in Ehlers-Danlos syndrome).
- v) Severe deficiency of factor V and XI.

HESS CAPILLARY RESISTANCE TEST (TOURNIQUET TEST)

- This test is done by tying sphygmomanometer cuff to the upper arm and raising the pressure in it between diastolic and systolic for 5 minutes.
- After deflation, the number of petechiae appearing in the next 5 minutes in 3 cm² area over the cubital fossa are counted.
- Presence of more than 20 petechiae is considered a positive test.
- The test is positive in
- increased capillary fragility
- thrombocytopenia.

Investigation of Platelets and Platelet Function

Investigation of Platelets and Platelet Function

- SCREENING TESTS
- Skin bleeding time
- Peripheral blood platelet count.
 Thrombocytopenia (<1.5lakhs/cumm)
- Hematological malignancies
- Ingestion of certain drugs
- DIC
- ITP
- Anaemia- Megaloblastic anaemia, aplastic anaemia.

Thrombocytosis (>4.5lakhs/cumm)

- Inflammation
- Following haemorrhage
- Myeloproliferative disorders
- Fresh blood film examination to see the morphologic abnormalities of platelets.
- Giant platelets in myeloproliferative disorder and Bernard Soulier syndrome.

SPECIAL TESTS

- Platelet adhesion test:
- Whole blood is made to pass over a column of nonsiliconised glass beads.
- Proportion of platelets retained are assessed from platelet count done before and after the passage of blood.
- Less than 25% retention is usually observed in Von willebrand disease.

- Aggregation test:
- Special instrument called aggregometer is used.
- Platelet aggregation agent or agonist is added to the platelet rich plasma
- Change in light transmission due to aggregation is recorded with photometer.
- Various agonists: ADP, epinephrine, collagen, arachidonic acid and ristocetin.

- Aggregation response is deficient with ADP, epinephrine, collagen in Glanzmann's thrombasthenia (Absence of platelet receptor GpIIb-IIIa, necessary for fibrinogen binding during aggregation).
- Defective aggregation with ristocetin but not with other – Von Willibrand disease and Bernard- Soulier syndrome as Ristocetin binds to vWF/GPIb/IX complex and results in agglutination

Investigation of Blood Coagulation

Investigation of Blood Coagulation

- 1. SCREENING TESTS
- Whole blood coagulation time
- done by various capillary and tube methods
- limited value, since it is an insensitive and nonspecific test.
- Normal range is 4-9 minutes at 37°C.
- One-stage prothrombin time (PT)
- Activated partial thromboplastin time (APTT) or partial thromboplastin time with kaolin (PTTK)
- Measurement of fibrinogen

One-stage prothrombin time (PT)

- Extrinsic and common pathway
- Tissue thromboplastin and calcium are added to platelet poor plasma.
- Clotting time of mixture is noted.
- Commercial tissue thromboplastin is prepared from rabbit brain or lung.
- Normal values depend upon the thromboplastin used
- With most rabbit thromboplastins the range of PT
 11-16 sec

 To ensure uniformity of anticoagulation therapy the results should be reported as INR-international normalized ratio.

- International sensitivity index-determined for each thromboplastin reagent-specific for manufacturer
- Indicated the responsiveness of the particular lot of reagent compared to the international reference thromboplastin

- The common causes of prolonged one-stage PT are as under:
- i) Administration of oral anticoagulant drugs.
- ii) Liver disease, especially obstructive liver disease.
- iii) Vitamin K deficiency.
- iv) Disseminated intravascular coagulation.

Activated partial thromboplastin time (APTT)

- Monitor intrinsic and common pathway
- Platelet poor plasma is incubated with an activator-Kaolin, celite and silica.
- Phospholipid or partial thromboplastin and calcium are then added.
- Normal range is **30-40 sec**.

The common causes of a prolonged PTTK (or APTT) are as follows:

- i) Parenteral administration of heparin.
- ii) Disseminated intravascular coagulation.
- iii) Liver disease.
- iv) Inherited def of F VIII or F IX

Thrombin time

- Thrombin reagent is added to platelet poor plasma.
- Time required for clot formation is noted.
- Normal range is 8-12 sec.
- Prolongation occurs in
- Disorder of fibrinogen: afibrinogenaemia, dysfibrinogemaemia.
- ii) Chronic liver disease
- iii) Increased level of fibrin degradation products.

SPECIAL TESTS

1. Coagulation factor assays:

- PT or APTT is performed using mixture of patient's plasma and factor deficient plasma (contain all coagulation factors, except one to be assayed).
- The unknown level of the factor activity is compared with a standard control plasma with a known level of activity.
- Results are expressed as percentage of normal activity.
- Normal level for all coagulation factors is 50-150%

2. Quantitative assays.

The coagulation factors can be quantitatively assayed by immunological and other chemical methods.

Investigation of Fibrinolytic System

SCREENING TEST

- 1. Estimation of fibrinogen.
- 2. Fibrin degradation products (FDP) in the serum.
- 3. Ethanol gelation test.
- 4. Euglobin or whole blood lysis time.

Latex Agglutination test

- A suspension of latex particles coated with anti fibrinogen antibodies or with anti FDP is mixed with serum on a glass slide.
- Agglutination of latex particles- positive test.

Specific tests

- Functional assays
- Immunological assays by ELISA
- Chromogenic assays of plasminogen activators, plasminogen and FDP.