Nucleotides and Nucleic Acids
Definitions

Nucleic acids are polymers of nucleotides

Nucleotides are carbon ring structures containing nitrogen linked to a 5-carbon sugar (a ribose)

5-carbon sugar is either a ribose or a deoxy-ribose making the nucleotide either a ribonucleotide or a deoxyribonucleotide

In eukaryotic cells nucleic acids are either:

- Deoxyribose nucleic acids (DNA)
- Ribose nucleic acids (RNA)
 - Messenger RNA (mRNA)
 - Transfer RNA (tRNA)
 - Ribosomal RNA (rRNA)
Nucleic Acid Function

DNA
Genetic material - sequence of nucleotides encodes different amino acids

RNA
Involved in the transcription/translation of genetic material (DNA)
Genetic material of some viruses
Nucleotide Function

Building blocks for DNA and RNA

Intracellular source of energy - Adenosine triphosphate (ATP)

Second messengers - Involved in intracellular signaling (e.g. cyclic adenosine monophosphate [cAMP])

Intracellular signaling switches (e.g. G-proteins)
Nucleotide Structure

Despite the complexity and diversity of life the structure of DNA is dependent on only 4 different nucleotides

Diversity is dependent on the nucleotide sequence

All nucleotides are 2 ring structures composed of:

- **5-carbon sugar**: \(\beta \)-D-ribose (RNA)
 \(\beta \)-D-deoxyribose (DNA)

- **Base**: Purine
 Pyrimidine

- **Phosphate group**: A nucleotide **WITHOUT** a phosphate group is a **NUCLEOSIDE**
Nucleotide Structure - 1

Sugars

Generic Ribose Structure

Ribose

Deoxyribose

N.B. Carbons are given numberings as a prime
Nucleotide Structure - 2
Bases - Purines

Adenine

Guanine
Nucleotide Structure - 3
Bases - Pyrimidines

Thymine

Cytosine
Nucleotide Structure - 4
Bases - Pyrimidines

Thymine is found ONLY in DNA.
In RNA, thymine is replaced by uracil
Uracil and Thymine are structurally similar
Nucleotide Structure - 4
Phosphate Groups

Phosphate groups are what makes a nucleoside a nucleotide
Phosphate groups are **essential** for nucleotide polymerization

Basic structure:
Nucleotide Structure - 4
Phosphate Groups

Number of phosphate groups determines nomenclature

Monophosphate
e.g. AMP
Free = inorganic phosphate (Pi)

Diphosphate
e.g. ADP
Free = Pyrophosphate (PPi)
Nucleotide Structure - 4
Phosphate Groups

Triphosphate
e.g. ATP

No Free form exists
Nucleotide Structure - 4
Base-Sugar-PO$_4^{2-}$

Mono phosphate
Nucleic Acid Structure
Polymerization

Phosphodiesterase
Nucleic Acid Structure
Polymerization

Sugar Phosphate “backbone”
Bases

TAGCAC

5’ T A G C A C 3’
Nucleic Acid Structure
“Base Pairing”

RNA [normally] exists as a single stranded polymer

DNA exists as a double stranded polymer

DNA double strand is created by hydrogen bonds between nucleotides

Nucleotides always bind to complementary nucleotides

A \leftrightarrow T \quad (2 \text{ H-bonds})

G \leftrightarrow C \quad (3 \text{ H-bonds})
Nucleic Acid Structure
“Base Pairing”
Nucleic Acid Structure

“Base Pairing”

RNA is [usually] single stranded
Base pairing can occur in RNA but is usually within the same strand
DNA base-pairing is **antiparallel**

i.e. 5’ - 3’ (l-r) on top : 5’ - 3’ (r-l) on
Nucleic Acid Structure
Antiparallel Base Pairing

Why antiparallel DNA base-pairing?

- Need to shield the genetic information
- Is the only conformational structure to allow double helix formation
Nucleic Acid Structure
The double helix

First determined by Watson & Crick in 1953

Most energy favorable conformation for double stranded DNA to form

Shape and size is uniform for all life (i.e. DNA is identical)

Without anti-parallel base pairing this conformation could not exist

Structure consists of “major” grooves and “minor” grooves

Major grooves are critical for binding proteins that regulate DNA function
Nucleic Acid Structure
The double helix