Non Steroidal Anti-inflammatory Drugs (NSAIDs)
4 signs of inflammation

• Redness - due to local vessel dilatation
• Heat - due to local vessel dilatation
• Swelling – due to influx of plasma proteins and phagocytic cells into the tissue spaces
• Pain – due to local release of enzymes and increased tissue pressure
Phospholipids in plasma membrane

Phospholipase A₂

Platelet-activating factor

Arachadonic acid

Cyclo-oxygenase

Prostaglandins, Thromboxanes

Lipo-oxygenase

Leukotrienes
NSAIDs

• Cause relief of pain - analgesic
• Suppress the signs and symptoms of inflammation.
• Exert antipyretic action.
• Useful in pain related to inflammation. Esp for superficial/integumental pain.
Classification of NSAIDs

• **Salicylates**: aspirin, Sodium salicylate & diflunisal.
• **Propionic acid derivatives**: ibuprofen, ketoprofen, naproxen.
• **Aryl acetic acid derivatives**: diclofenac, ketorolac
• **Indole derivatives**: indomethacin, sulindac
• **Alkanones**: Nabumetone.
• **Oxicams**: piroxicam, tenoxicam
Classification of NSAIDs

• Anthranilic acid derivatives (fenamates): mefenamic acid and flufenamic acid.
• Pyrazolone derivatives: phenylbutazone, oxyphenbutazone, azapropazone (apazone) & dipyrrone (novalgine).
• Aniline derivatives (analgesic only): paracetamol.
Clinical Classif.

- Non selective Irreversible COX inhibitors
- Non selective Reversible COX inhibitors
- Preferential COX 2 inhibitors
- 10-20 fold cox 2 selective
- meloxicam, etodolac, nabumetone
- Selective COX 2 inhibitors
- > 50 fold COX -2 selective
- Celecoxib, Etoricoxib, Rofecoxib, Valdecoxib
- COX 3 Inhibitor? PCM
Cyclooxygenase-1 (COX-1):
- constitutively expressed in wide variety of cells all over the body.
- "housekeeping enzyme"
- ex. gastric cytoprotection, hemostasis

Cyclooxygenase-2 (COX-2):
- inducible enzyme
- dramatically up-regulated during inflammation (10-18X)
- constitutive: maintains renal blood flow and renal electrolyte homeostasis
Nonselective COX inhibitors

- COX-1 (Constitutive)
 - GI cytoprotection
 - Platelet aggregation
 - Renal electrolyte homeostasis
 - Renal blood flow maintenance

- COX-2 (Constitutive)
 - Renal electrolyte homeostasis
 - Renal blood flow maintenance

- COX-2 (Inducible)
 - Pain
 - Fever
 - Inflammation

Selective COX-2 inhibitors
Salicylates
Acetyl salicylic acid (aspirin).

Kinetics:

- Well absorbed from the stomach, more from upper small intestine.
- Distributed all over the body, 50-80% bound to plasma protein (albumin).
- Metabolized to acetic acid and salicylates (active metabolite).
- Salicylate is conjugated with glucuronic acid and glycine.
- Excreted by the kidney.
- Alkalinization of the urine increases the rate of salicylates excretion.
Aspirin....

• Low dose of aspirin 0.6 g is eliminated by 1st order kinetics and its t 1/2 is 3-5 h
• while high dose (more than 4 g/day) is eliminated by zero-order kinetics and its t 1/2 may increase up to 15 h.

Mechanism of action:
• Aspirin irreversibly inhibits cyclo-oxygenase enzyme, so blocks synthesis of prostaglandins and thromboxane A2.
Aspirin... *Pharmacological actions*

Anti-inflammatory actions:

Higher doses; 3-6 g/day, OA , RA, Rh fever

- Inhibits prostaglandin synthesis
- Blocks action of *kinins* which are mediated through prostaglandin synthesis.
- Inhibits *granulocyte* adherence to damaged vasculature.
- Stabilizes *lysosomes*.
- Inhibits migration of *PMN leukocytes* & *macrophages* into the site of inflammation.
Aspirin....

- **Analgesia**: inhibit of PG: 300-600mg, 6-8 hrly
- uses
- **Antipyretic** axn.: inhibit of PG: resets the “hypothalamic thermostat”
- **Inhibition of platelet aggregation**: low doses: irreversibly inhibit platelet COX, antiplatelet effect lasts 8-10 days. (acts on TXA2, no effect on PGI2)
Aspirin...

- Uses:
 - **Antiplatelet: M imp**
 - Analgesic
 - Antiinflammatory
 - Antipyretic
 - Misc.
 - Colonic Ca
 - Pre eclampsia
 - Alzheimer’s Ds
 - Familial polyposis
 - Niacin induced flush
Adverse effects

- **CNS:** Headache, Tinnitus, dizziness, blurred vision, irritability, hyperventilation (Salicylism)
- **Cardiovascular:** fluid retention, HT, edema, CHF (rarely)
- **GIT upset:** abd pain, nausea, vomiting, peptic ulceration & bleeding
- **Hypersensitivity:** bronchial asthma, angioedema & rashes,
- **Thrombocytopenia, Hypoprothrombinemia** and bleeding tendency as aspirin competes with vitamin K, so decreasing prothrombin synthesis.
Aspirin ADRs

• Renal effects: inhibition of PGE2 mediated vasodilation in response to ATII : renal insufficiency, renal failure, hyperkalemia, proteinuria. *Analgesic nephropathy* on chronic use

• Hepatic: Liver function abnormalities, rarely liver failure.
Reye’s Syndrome

- Aspirin and derivatives may be a trigger.
- Hepato encephalopathy.
- Highly Lethal
- Do not give in children with chickenpox or influenza B infection.
Aspirin Overdose

- Acid-base disturbance.
- **Respiratory Alkalosis** (400-500 microgm/ml).
- Direct stimul of the respiratory centers: salicylism; renal mech compensate by increasing excretion of HCO3

- **Metabolic Acidosis** (0.5-1 mg/ml)
- Medullary depression. Depletion of HCO3, accumulation of salicylic acid & deriv., absolute uncou[pling of oxidative phosp. >> accum of lactic acid, pyruvic & acetoacetic acid
TABLE 36-6 Relationship Between Blood Salicylate Level and Therapeutic and Toxic Effects

<table>
<thead>
<tr>
<th>Blood Salicylate Level (µg/mL)</th>
<th>Effect</th>
<th>Consequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>50-100</td>
<td>Analgesia, antipyresis</td>
<td>Tinnitus, dizziness, nausea</td>
</tr>
<tr>
<td>150-300</td>
<td>Antiinflammatory</td>
<td>Respiratory alkalosis</td>
</tr>
<tr>
<td>200-350</td>
<td>Salicylism</td>
<td></td>
</tr>
<tr>
<td>≤350</td>
<td>Hyperventilation</td>
<td></td>
</tr>
<tr>
<td>450-800</td>
<td>Disrupted carbohydrate metabolism, sweating, vomiting, uncoupled oxidative phosphorylation, depressed respiration, increasing acidosis and body temperature</td>
<td>Metabolic acidosis, dehydration, hyperthermia, respiratory acidosis, delirium, convulsions, coma</td>
</tr>
</tbody>
</table>
Acute aspirin poisoning

S/S: Restlessness, tremors, convulsion, vomiting, dehydration, hypotension, hyperventilation, hyperreflexia, hyperpyrexia & coma.

Treatment:

- **Activated charcoal** 50g p.o to adsorb salicylates and prevents its absorption.

- **Alkalinization of urine** (to enhance excretion) by i.v Na HCO3 which also corrects acidosis.

- **Anticonvulsant** e.g. i.v diazepam.

- **Cold fomentation** and ice bags.
Acute aspirin poisoning...

- Correct dehydration by i.v fluids (5% dextrose).
- Correct acid / base balance (alkalosis or mixed alkalosis/acidosis need no specific treatment).
- Correct hypoprothrombinemia by i.v vitamin K.
- Hemodialysis may be needed.
Contraindications:

- Peptic ulcer,
- esophageal varices,
- bronchial asthma,
- idiosyncrasy, allergy,
- viral infection in children,
- bleeding tendency and
- small dose in gout (competes with uric acid excretion).
Interactions

• Aspirin displaces oral anticoagulants and oral hypoglycemics from their plasma protein binding sites, so increasing their activities and may lead to toxicity.

• inhibits the uricosuric effects of sulphipyrazone and probenecid.

• Barbiturates increase the analgesic effect of aspirin.

• Alcohol:
Locally acting salicylates

- **Salicylic acid**: keratolytic, antiseptic & fungistatic.
- **Methyl salicylate** (wintergreen oil): used as counterirritant for muscle and joint pain.
- **Sulfasalazine**: it is a combination of sulfapyridine and 5-aminosalicylic acid (5-ASA). Sulfasalazine liberates 5-ASA in the colon where it blocks the synthesis of leukotriene B4 locally and used in ulcerative colitis.
PROPIONIC ACID DERIVATIVES

- Ibuprofen, Naproxen, Fenoprofen.
- Very similar in mechanism of action and effects (compared to aspirin).
- More effective as analgesics
- Ibuprofen and Fenoprofen half-life of 2 hrs.
- Naproxen has a longer half-life (13 hrs).
- Use: Dysmenorrhea.
- Adverse effects are similar: nephrotoxicity, jaundice, nausea, dyspepsia, edema, rash, pruritus, tinnitus.
- Interactions and contraindications: same as aspirin.
ACETIC ACIDS

• **Indomethacin**: indole AA: Most potent inhibitor of prostaglandin synthesis (COX-1) more effective but more toxic than aspirin. May also inhibit phospholipase A₂, C

• Orally absorbed, highly bound to plasma proteins, half-life 2hrs.

• Metabolized in liver, excreted in bile and urine.

• **A/E**: GI, severe migraine (20-25%), dizziness, confusion and depression, risk of fluid retention, hyperkalemia and blood dyscrasias.

• **Contraindicated** in pregnancy and in patients with psychosis.
Indomethacin

- **Uses:** Treatment of patent ductus arteriosus in premature babies.
- Acute gouty arthritis, ankylosing spondylitis, osteoarthritis.

- **Sulindac:**
 - Is a pro-drug closely related to Indomethacin.
 - Converted to the active form of the drug.
 - Indications and toxicity similar to Indomethacin
Diclofenac

- Short half life (1-2 hrs), high 1st pass metab., accumulates in synovial fluid after oral admn..
- GI S/E: in about 20% pt. Severe effects like GI distress, GI bleeding, gastric ulceration less frequent than other NSAIDs and similar to celecoxib.
- High doses impairs renal function. Elevates liver enzymes.
- CI: children, pregnant women and nursing mothers
FENAMATES

• Mefenamic acid,
• Analgesic, anti-inflammatory properties less effective than aspirin, more toxic.
• Short half-lives, should not be used for longer than one week and never in pregnancy and in children.
• Diarrhea and abdominal pain.
• Enhances oral anticoagulants.
PYRAZOLONE DERIVATIVES

• Phenylbutazone: **Withdrawn from the market.**
• Adverse effects: agranulocytosis, aplastic anemia, hemolytic anemia, severe gastric irritation
• Oxyphenbutazone: one of the metabolites of phenylbutazone. **Apazone.** Similar to phenylbutazone, but less likely to cause agranulocytosis
OXICAMS

- Piroxicam.
- High doses inhibits PMN migration, decrease oxygen radical production, inhibits lymphocyte function.
- Used in osteoarthritis, ankylosing spondylitis and rheumatoid arthritis.
- Adverse effects: GI symptoms, dizziness, tinnitus, headache, rash. Peptic ulcer (9.5 higher).
Ketorolac

- Analgesic, no anti-inflammatory effect.
- Can replace morphine in mild to moderate postsurgical pain.
- IM, IV.
- Similar toxicities. Renal toxicity common with chronic use.
Nimesulide

• Rel weak PG synth inhib, 5-10 COX 2 sel.
• Other mech – reduced SO prod, free radical scavenger, inhib of PAF synth & of metalloproteinase act in cartilage
• NOT FDA approved, Banned in many countries d/t hepatotoxicity
• NOT TO BE USED IN CHILDREN
Preferential COX 2 inhibitors

- 10-20 fold cox 2 selective
- meloxicam: longer acting
- etodolac: less GIT tox,
- nabumetone: non acidic, prodrug, longer acting
Selective COX 2 inhibitors

• > 50 fold COX-2 selective
• Celecoxib, Etoricoxib, Rofecoxib, Valdecoxisb, .

Inhibit prostacyclin (COX-2) in sites of inflammation.

• Do not block “housekeeping” effect of COX-1.
• Antipyretic, analgesic and anti-inflammatory effect.

• Gastro –protective as compared to non selective NSAIDs ; BUT SAME potential for renal and hepatic dysfunction ,While INCREASED risk of thrombotic CVS disorders.
COX-2 Selective

• Celecoxib:
 • Osteoarthritis (100-200mg BID), rheumatoid arthritis, dysmenorrhea, acute gouty attacks, acute musculoskeletal pain.
 • Being a sulphonamide can cause skin rash & hypersensitivity rxn., occasional oedema & HT.
• A/E:
 • Etoricoxib, parecoxib
Rofecoxib (Vioxx®) & Valdecoxib

- Withdrawn from the market.
- Higher incidence of cardiovascular thrombotic events.
- Inhibit prostacyclin (PGI2) in vascular endothelium, letting TXA$_2$ act freely and promote platelet aggregation.
Paracetamol /Acetaminophen

Analgesic and antipyretic actions equivalent aspirin.

• No anti-inflammatory effects---.can inhibit Cox 1 poorly in presence of superoxides at inflamm sites
• No occult bleeding or gastric irritation ,do not inhibit platelet aggregation, or affect prothrombin time.
• No relationship with Reye’s syndrome.
• Does not antagonize the effects of uricosuric drugs.
• Proposed as COX 3 inhibitor – involved in pain perception & fever NOT in inflamm
Paracetamol Metabolism

Metabolized by liver glucoronyl transferase to form an inactive compound.

Minor CYP-dependent pathway produces a N-acetyl-para-benzoquinonimine (NAPQI) a reactive metabolite that is inactivated by glutathione.

In serious overdose glutathione becomes depleted, and metabolite damages hepatocytes.

Alcohol enhances liver toxicity via induction of CYP2E1 enzyme.
Mechanism of Paracetamol Poisoning and its Treatment.

Paracetamol

- Major pathway: Glucuronide or Sulfate Conjugation
- Minor pathway:
 - Cytochrome P-450
 - N-acetyl-p-benzoquinone imine
 - A toxic metabolite

For normal therapeutic doses:
- Glutathione
- Glutathione conjugate of toxic metabolite (being non-toxic, excreted)
- Produce more

In toxic doses:
- Treatment:
 - Methionine (oral) or N-Acetylcyctysteine (I.V)
 - Methionine or N-acetylcyctysteine conjugates of toxic metabolite - Excreted

Oxidation of SH group of hepatic and renal cell proteins
- Cell proteins get covalently bound to toxic metabolite → cell death
Acute PCM Toxicity

• PCM usual doses - 325-650 TID –QID (Max 2.6 g/day - latest FDA) .

• Acute ingestion of > 7.5 g can result in toxicity---severe liver damage.

• The signs & symptoms of toxicity start within 12-24 hrs: N, V, D, abdominal pain, dizziness, elevated plasma transaminases. Signs of hepatic damage appear over 2-4 days. Renal tubular necrosis may occur. Onset of hepatic encephalopathy or worsening of coagulopathy beyond this pd. Indicates poor prognosis.
Management

• Severe liver damage with pl. conc>300 microgm/ml at 4 hrs or 45 microgm/ml at 15 hrs after ingestion.

• Activated charcoal- within 4hrs ↓PCM absb by 50-90%

• Antidote- N-acetylcysteine (NAC)- detoxifies NAPQI- both repletes glutathione store and may conjugate with NAPQI by serving as GSH substitute. Also has antioxidant and anti-inflamm properties.

• Oral loading dose of 140 mg/kg , followed by 70mg/kg q 4hrly for 17 doses. If available IV LD- 150mg/kg IV inf in200ml of 5%D over 1 hr, followed by 50 mg/kg in 500ml 5%D over 4hrs then 100mg/kg in 1000ml 5%D over 1