
Bronchial Asthma

Sections

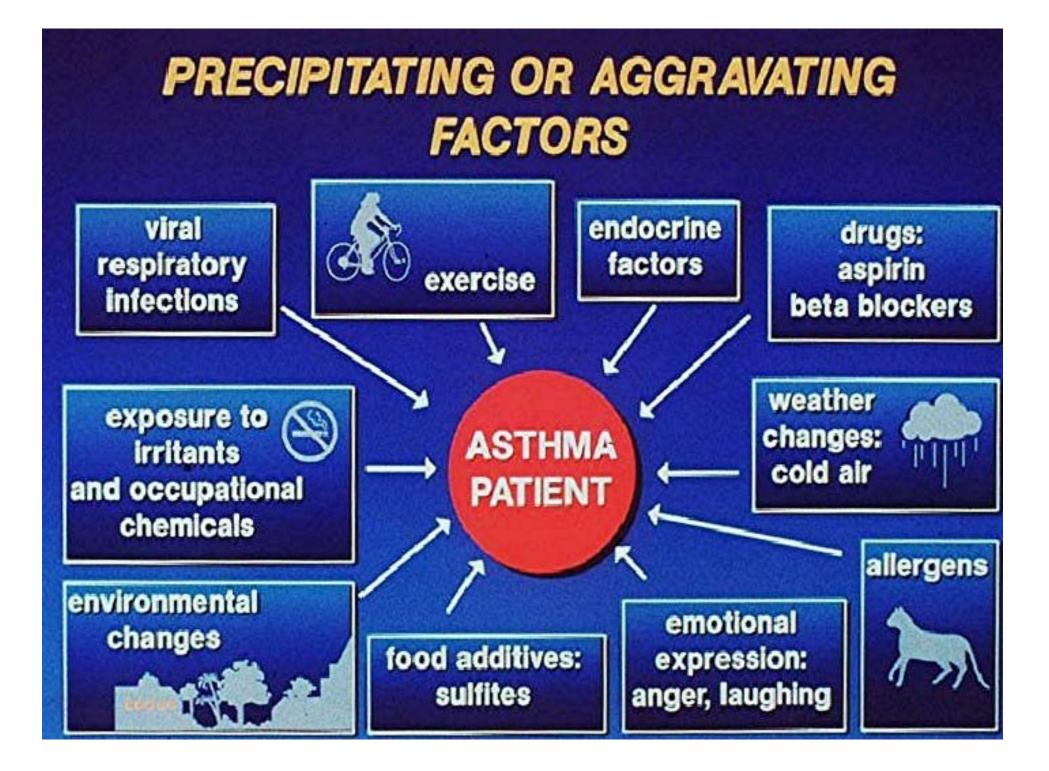
- Epidemiology
- Pathophysiology
- Diagnosis
- Medications
- Approach to Management
- Treatment Steps
- Special Situations
- Acute Asthma

What is Asthma.....Definition (GINA)

- A chronic inflammatory disorder of the airways in which many cells and cellular elements play a role.
- The chronic inflammation is associated with airway hyper-responsiveness that leads to recurrent episodes of wheezing , breathlessness, chest tightness and coughing particularly at night or early morning.
- These episodes are usually associated with widespread, but variable airflow obstruction within the lung that is often reversible either spontaneously or with treatment

Asthma classification

- Child-onset asthma(exrinsic asthma)
 - Associated with atopy
 - IgE directed against common environmental antigens (house-dust mites, animal proteins, fungi
 - Viral wheezing Infants/children, allergy/allergy history associated with continuing asthma through childhood


Adult-onset asthma

- Many situations
- Allergens important
- Non-IgE asthma have nasal polyps, sinusitis, aspirin sensitivity or NSAID sensitivity
- Idiosyncratic asthma less understood

- Adult-onset asthma
 - Occupational exposure
 - animal products, biological enzymes, plastic resin, wood dusts, metal
 - removal from workplace may improve symptoms although symptoms persist in some

Prevalence

- Most common chronic disease currently affecting appx. 300 million people worldwide.
- 10-12% of adults
- 15 % of children
- Most have periodic wheezing attacks separated by symptomfree period.
- attacks can last minutes to days, and can become dangerous if the airflow becomes severely restricted.

Epidemiology

- Age –any (peak age 3 yrs)
- Current asthma prevalence is higher among
 - children than adults
 - boys than girls(2:1)
 - women than men
 - Children grow out of their asthma
- Asthma morbidity and mortality is higher among
 - African Americans than Caucasians

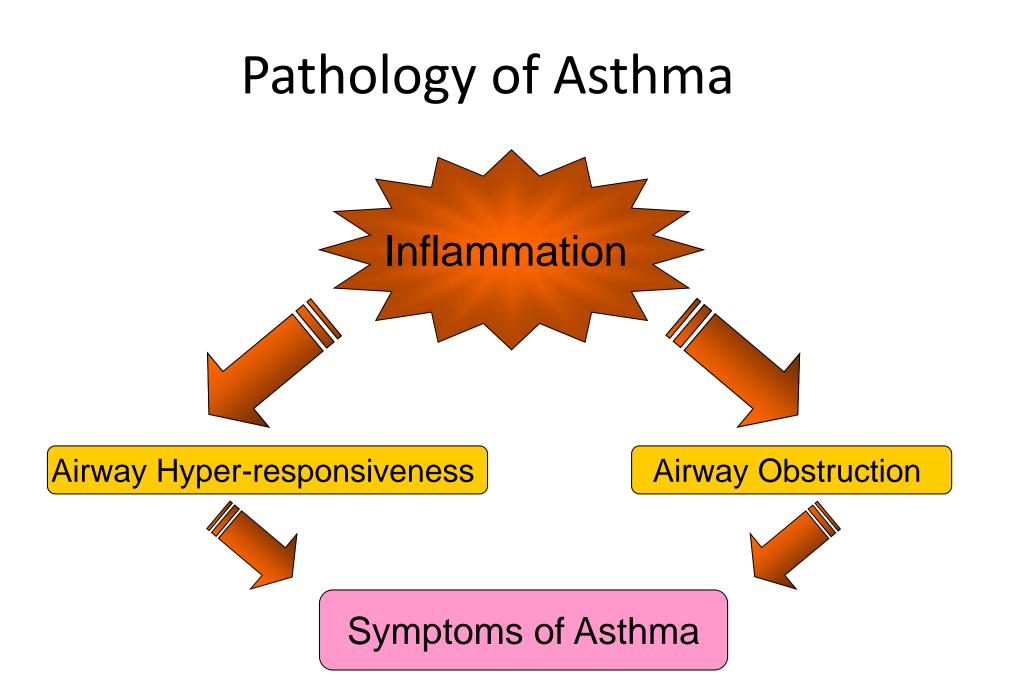
Risk Factors for Developing Asthma: Genetic Characteristics

Atopy

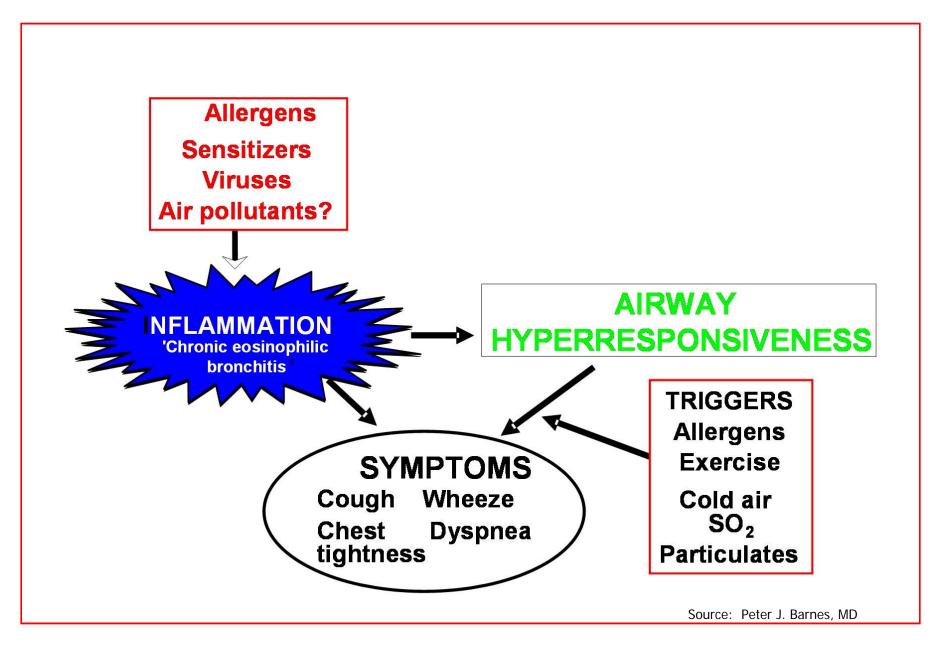
- Major risk factor
- The body's predisposition to develop an antibody (IgE) in response to exposure to environmental allergens
- Can be measured in the blood
- Includes allergic rhinitis, asthma, hay fever, and eczema

Causes/ Risk factors

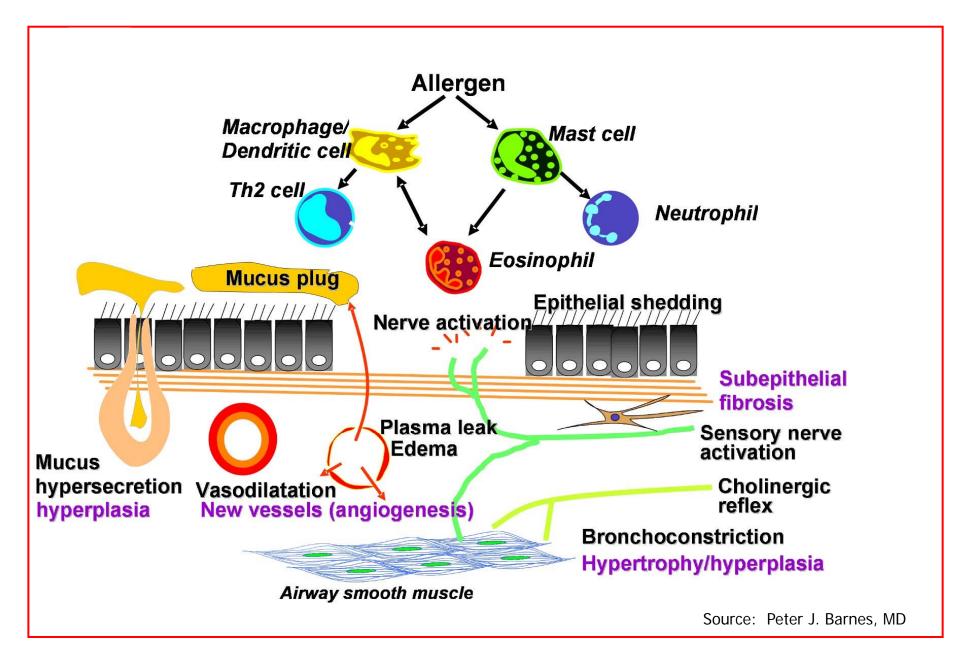
Endogenous Factors

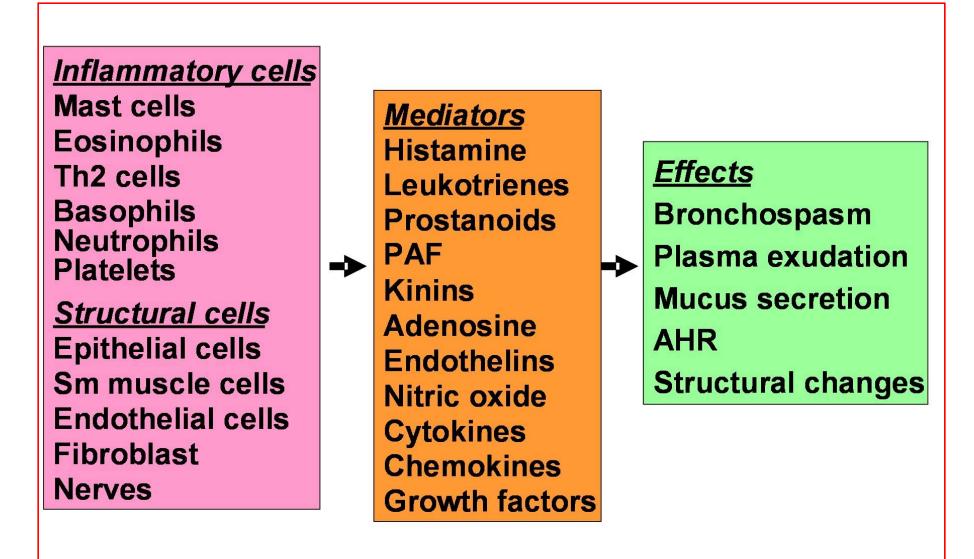

Genetic predisposition Atopy Airwayhyperresponsiveness Gender Early viral infection

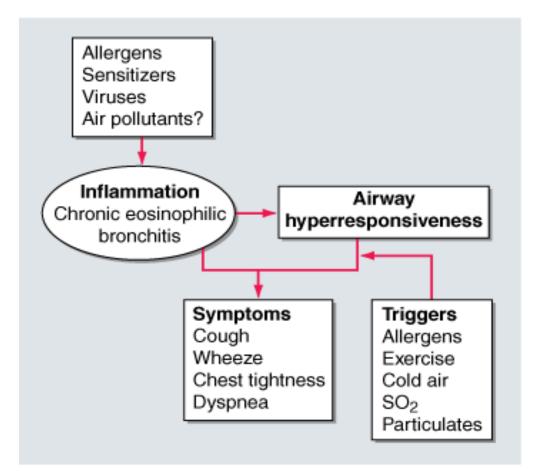
ENVIRONMENTAL RISK FACTORS


Perinatal Factors Indoor and Outdoor Allergens Smoking and Environmental Tobacco Smoke Other Pollutants Respiratory Illnesses

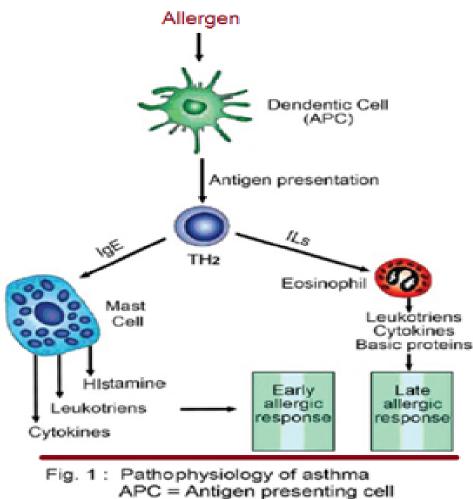
Triggers


- Allergens
- URI
- Exercise and hyperventilation
- Cold air
- Sulphur dioxide and irritant gases
- Drugs(β-blocker, aspirin)
- Stress
- Irritants (household sprays, paintfumes)


Mechanisms: Asthma Inflammation

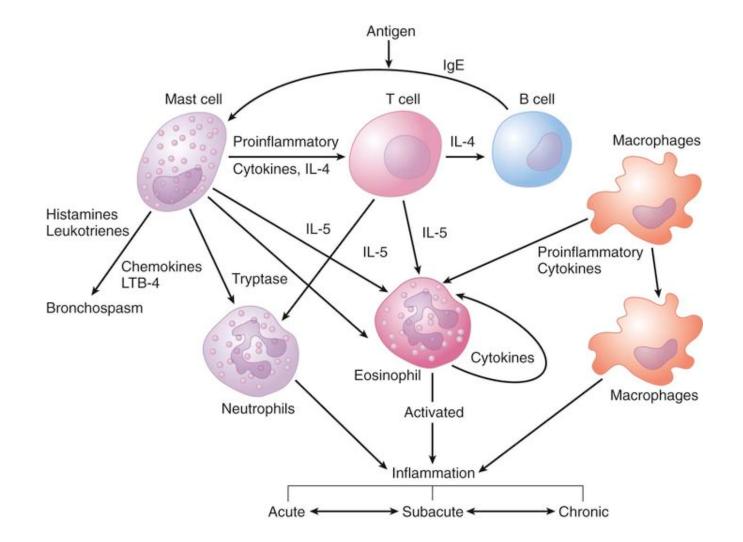

Asthma Inflammation: Cells and Mediators

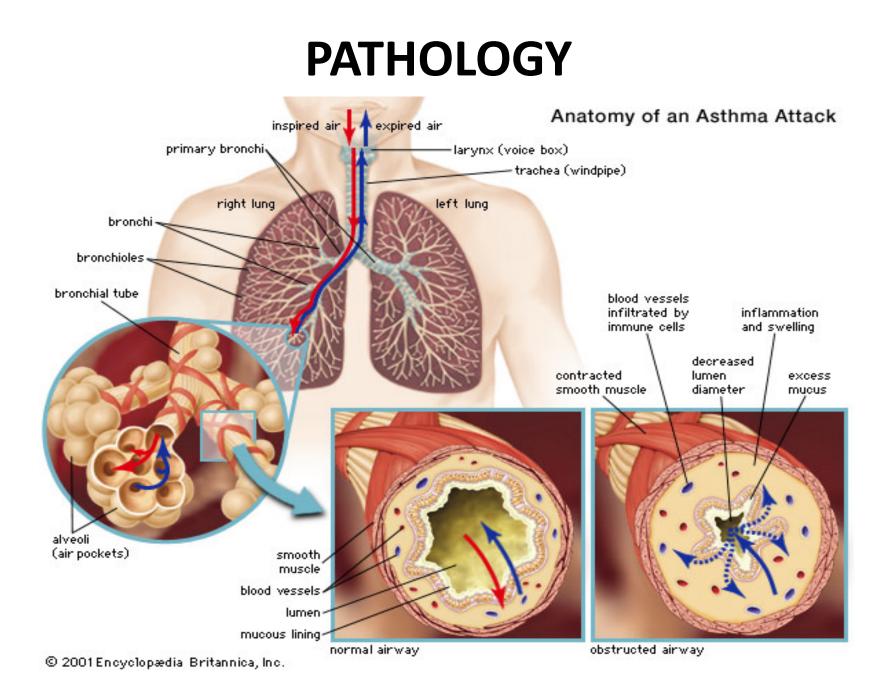
Asthma Inflammation: Cells and Mediators


Pathophysiology

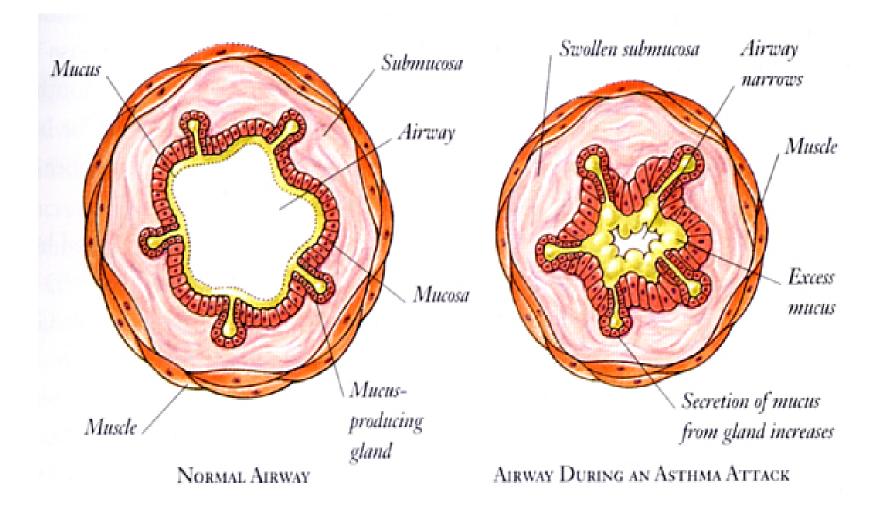
Source: Fauci AS, Kasper DL, Braunwald E, Hauser SL, Longo DL, Jameson JL, Loscalzo J: *Harrison's Principles of Internal Medicine*, 17th Edition: http://www.accessmedicine.com

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

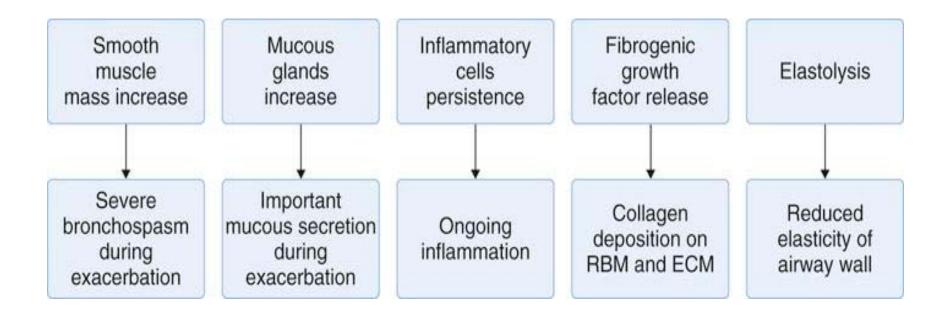

Pathophysiology

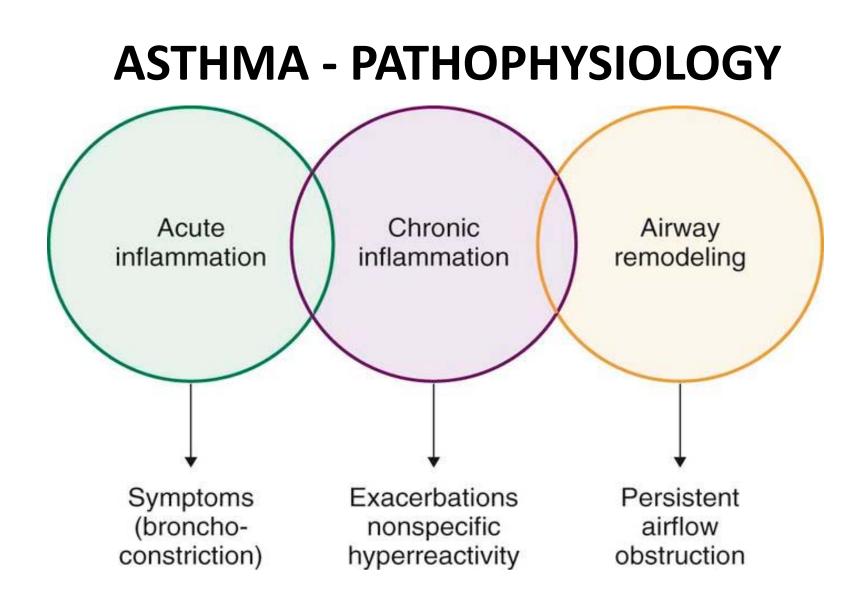


- ILs = Interleukins
- TH2 = T-lymphocyte Helper cell 2


Inflammation \rightarrow Remodeling

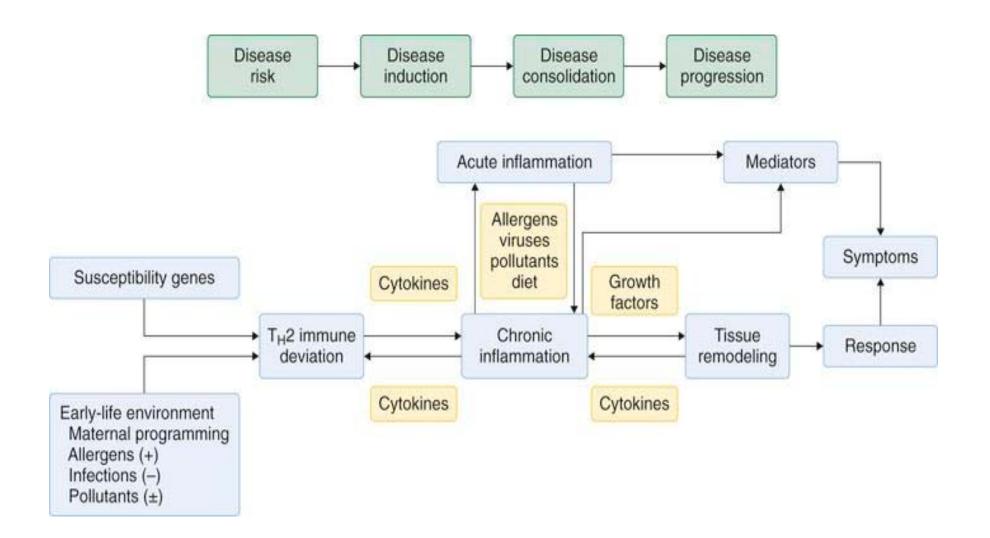
- Inflammation
- Airway Hypersecretion
- Subepithelial fibrosis
- Angiogenesis





Asthma: Pathological changes

Pathology and consequences



Genetic predisposition Intrinsic vulnerability Atopy/allergy Inflammation underlies disease processes

Phenotype varies by individual and over time

Clinical symptoms also vary by individual and over time

Difference and overlap

Wheezy

bronchitis 10%

COPD

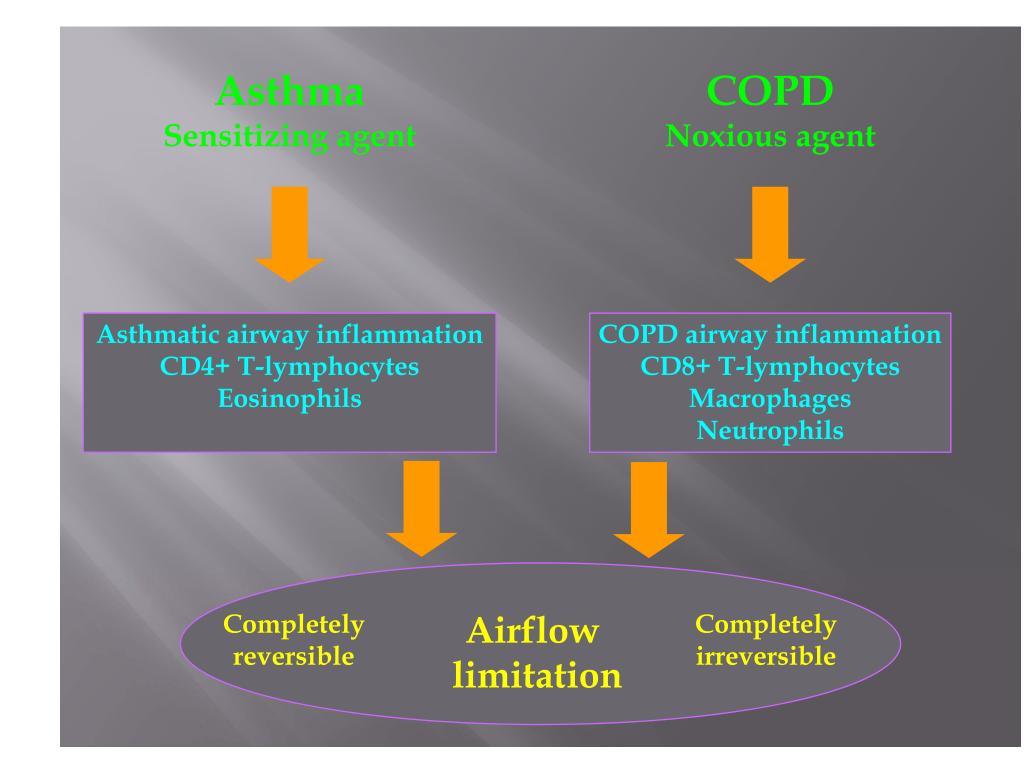
Neutrophils

No airway hyperresponsiveness

Less bronchodilator response

Limited steroid response

Asthma


Eosinophils

Airway hyperresponsiveness

> Bronchodilator response

Steroid

esponse

Physiologic Differences

Asthma

- Normal DLCO
- Normal lung volume
- Normal elastic recoil
- Flow dominant BD response

COPD

- Abnormal DLCO
- Hyperinflation
- Decreased elastic recoil
- Volume dominant BD response

Disease Pathology	Asthma	COPD
Reversible airflow obstruction	+ ++	+
Airway inflammation	+ + +	+ +
Mucus hypersecretion	+	+++
Goblet cell metaplasia	+	+ +
Impaired mucus clearance	+ +	+ +
Epithelial damage	++	—
Alveolar destruction	—	++
Smooth muscle hypertrophy	+ +	_
Basement membrane thickening	+++	—

Asthma-Classic presentation

- Episodic wheeze, dyspnea, chest tightness, or cough often triggered by allergens or sinusitis/rhinitis.
- Physical examination: wheezing, prolonged endexpiration, and decreased air movement. However, the examination can be normal.
- Uncontrolled symptoms in spite of aggressive therapy warrant evaluation to rule out other etiologies of the patient's symptoms and assess whether there are any triggers that can be controlled

Is it Asthma?

- Recurrent episodes of wheezing
- Troublesome cough at night
- Cough or wheeze after exercise
- Cough, wheeze or chest tightness after exposure to airborne allergens or pollutants
- Colds "go to the chest" or take more than 10 days to clear

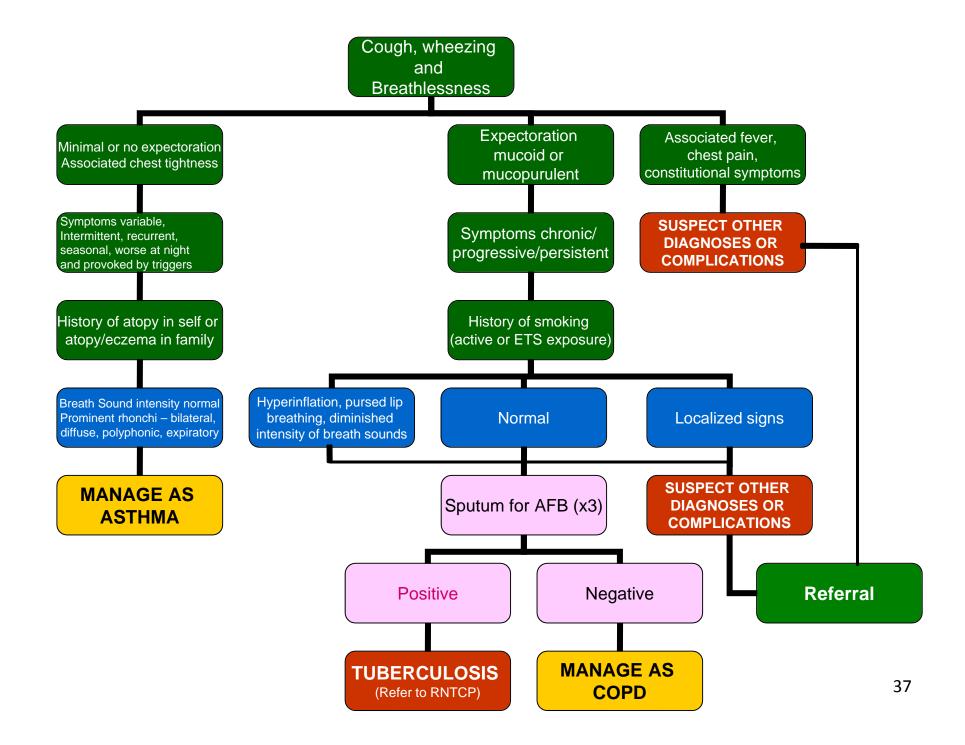
How Does Asthma present ??

Clinical Presentations

Episodic Attack Status Asthamatics Chronic Asthma

Always Describe diseases in following manner

Patient Symptoms
Clinical features
Inspection
Palpation/percussion
Auscultation


Extrinsic vs intrinsic asthma

Points	Early Onset	Late Onset
Age	Early	Late
Atopy	Yes	No
Allergen involvement	Yes	No
Family history	Yes	No
IgE in Serum	Increased levels	Normal levels
Skin Hypersensitivity test	Positive	Negative
Provocation test result	Positive	Negative

Differential diagnosis

Category	Examples
Diseases causing recurrent episodic dyspnea	Chronic obstructive pulmonary disease, coronary artery disease, congestive heart failure, pulmonary emboli, recurrent gastroesophageal reflux with aspiration, recurrent anaphylaxis, systemic mastocytosis, carcinoid syndrome
Common diseases	Rhinitis, sinusitis, otitis, bronchitis (chronic or postviral),
causing cough	bronchiectasis, cystic fibrosis, pneumonia, diffuse pulmonary fibrosis
Common diseases	Chronic obstructive bronchitis and emphysema, bronchiolitis
causing airflow	obliterans, cystic fibrosis, organic or functional laryngeal narrowing,
obstruction	extrinsic or intrinsic narrowing of trachea or major bronchus.

DIAGNOSIS

Key indicators for considering a diagnosis of asthma

- Typical history
- Intermittent symptoms (reversible)
- Association of symptoms to weather changes, dust, smoke, exercise, viral infection, animals with fur or feathers, house-dust mites, mold, pollen, strong emotional expression (laughing or crying hard), airborne chemicals or dust
- Diurnal variation
- Family history
- Presence of atopy, allergic rhinitis, skin allergies

Routine Investigations

- Hemogram including eosinophil count
- Blood gas analysis
- X-ray chest
- ECG
- Serum electrolytes (Mg, Na, K)
- spirometry

Spirometry

- Spirometry measurements (FEV₁, FVC, FEV₁/FVC) before and after bronchodialator helps determine whether there is airflow obstruction and <u>whether it is reversible</u> over the short term
- (12% in increase in FEV1 and absolute increase in 200ml after 200ug of salbutamol inhalation)

Spirometry

- Spirometry should be done
 - at the time of initial assessment
 - after treatment is initiated and symptoms and peak expiratory flow (PEF) have been stabilized
 - at least every 1 to 2 years to assess the maintenance of airway function

Classification of Severity

 CLASSIFY SEVERITY Clinical Features Before Treatment		
Continuous Limited physical activity	Frequent	≤ 60% predicted Variability > 30%
Daily Attacks affect activity	> 1 time week	60 - 80% predicted Variability > 30%
> 1 time a week but < 1 time a day	> 2 times a month	≥ 80% predicted Variability 20 - 30%
< 1 time a week Asymptomatic and normal PEF between attacks	\leq 2 times a month	≥ 80% predicted Variability < 20%

The presence of one feature of severity is sufficient to place patient in that category.

TREATMENT

Goals of Asthma Therapy

- Prevent recurrent exacerbations and minimize the need for emergency department visits or hospitalizations
- Maintain (near-) "normal" pulmonary function
- Maintain normal activity levels (including exercise and other physical activity)
- Provide optimal pharmacotherapy with minimal or no adverse effects
- Prevent asthma mortality

Asthma Management and Prevention Five Components

- 1. Develop Patient/Doctor Partnership
- 2. Identify and Reduce Exposure to Risk Factors
- 3. Assess, Treat and Monitor Asthma
- 4. Manage Asthma Exacerbations
- 5. Special Considerations

Asthma Management and Prevention Program

- Asthma can be effectively controlled in most patients by intervening to suppress and reverse inflammation as well as treating bronchoconstriction and related symptoms
- Early intervention to stop exposure to the risk factors that sensitized the airway may help improve the control of asthma and reduce medication needs.

Asthma Management and Prevention Program

 Although there is no cure for asthma, appropriate management that includes a partnership between the physician and the patient/family most often results in the achievement of control

Component 1: Develop Patient/Doctor Partnership

- Educate continually
- Include the family
- Provide information about asthma
- Provide training on self-management skills
- Emphasize a partnership among health care providers, the patient, and the patient's family

Component 1: Develop Patient/Doctor Partnership

Key factors to facilitate communication:

- Friendly demeanor
- Interactive dialogue
- Encouragement and praise
- Provide appropriate information
- Feedback and review

Factors Involved in Non-Adherence

Medication Usage

- Difficulties associated with inhalers
- Complicated regimens
- Fears about, or actual side effects
- Cost
- Distance to pharmacies

Non-Medication Factors

- Misunderstanding/lack of information
- Fears about side-effects
- Inappropriate expectations
- Underestimation of severity
- Attitudes toward ill health
- Cultural factors
- Poor communication

Component 2: Identify and Reduce Exposure to Risk Factors

- Measures to prevent the development of asthma, and asthma exacerbations by avoiding or reducing exposure to risk factors should be implemented wherever possible.
- Asthma exacerbations may be caused by a variety of risk factors – allergens, viral infections, pollutants and drugs.
- Reducing exposure to some categories of risk factors improves the control of asthma and reduces medications needs.

Component 2: Identify and Reduce Exposure to Risk Factors

- Reduce exposure to indoor allergens
- Avoid tobacco smoke
- Avoid vehicle emission
- Identify irritants in the workplace
- Explore role of infections on asthma development, especially in children and young infants

 Influenza vaccination should be provided to patients with asthma when vaccination of the general population is advised

Component 3: Assess, Treat and Monitor Asthma

- The goal of asthma treatment, to achieve and maintain clinical control
- can be achieved in a majority of patients with a pharmacologic intervention strategy.

GINA Levels of Asthma Control

Characteristic	Controlled	Partly controlled (Any present in any week)	Uncontrolled
Daytime symptoms	None (2 or less / week)	2 or less / More than twice / week	
Limitations of activities	None	Any	3 or more features of
Nocturnal symptoms / awakening	None	Any	partly controlled asthma
Need for rescue / "reliever" treatment	None (2 or less / week)	More than twice / week any wee	
Lung function (PEF or FEV ₁)	Normal	< 80% predicted or personal best (if known) on any day	
Exacerbation	None	One or more / year	1 in any week

Asthma drug classification

CONTRO	RELIEVERS		
Anti-inflammatory action to prevent asthma attacks	Sustained bronchodilator action but weak or unproven anti-inflamatory effect	For quick relief of symptoms and use in acute attacks as PRN dosage only	
Inhaled corticosteroids 1. Beclomethasone 2. Budesonide 3. Fluticasone 4. Ciclesonide	Long-acting beta-agonists 1. Salmeterol 2. Formoterol	Short-acting beta-agonists 1. Salbutamol 2. Fenoterol 3. Terbutaline	
Leukotriene modifiers 1. Montelukast 2. Zafirlkast Oral corticosteroids 1. Prednisone 2. Prednisolone 3. Methylprednisolone 4. Methylprednisolone	Sustained-release theophylline preparations	Anti-cholinergenics Ipratropium bromide	

Methods of Medication Delivery

- Metered-dose inhaler (MDI)
 - Spacer/holding chamber/face mask
- Dry-powder inhaler (DPI)
- Nebulizer
- Oral Medication
 - Tablets, Liquids
- Intravenous Medication
 - IV Corticosteroids, IV Aminophylline

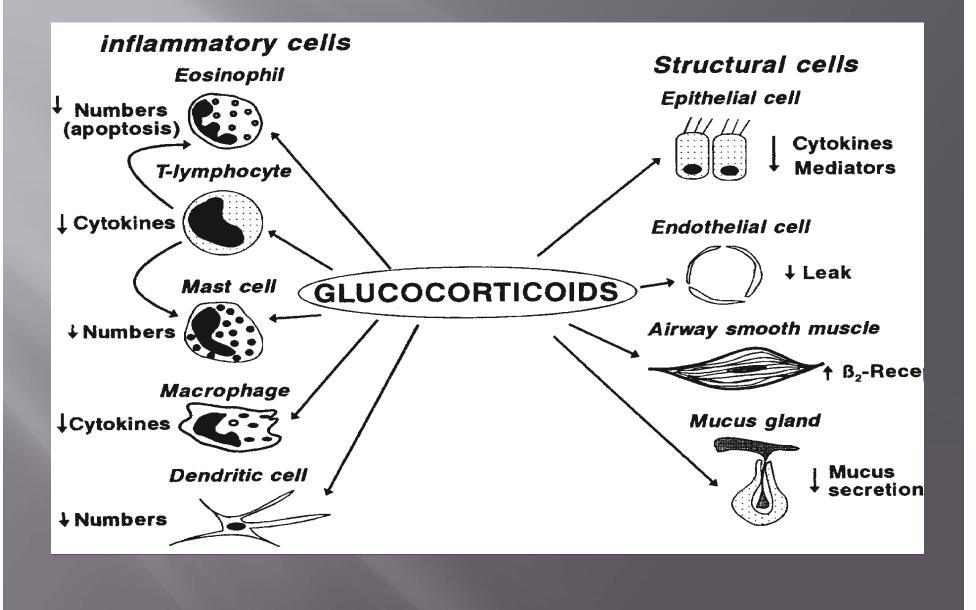
What are Controllers?

- Prevent future attacks
- Long term control of asthma
- Prevent airway remodeling

What Are Relievers?

- Rescue medications
- Quick relief of symptoms
- Used during acute attacks
- Action lasts 4-6 hrs

CONTROLLERS Inhaled Corticosteroids


- <u>Treatment of choice for</u> long-term control of persistent asthma
- Benefits
 - Reduced airway inflammation through topical activity
 - Decreases airway hyper-responsiveness.
 - Improve lung function and quality of life
 - Reduce the frequency of exacerbations
 - Reduced use of quick-relief medicine

****NEVER FOR RESCUE PURPOSES****

CONTROLLERS Corticosteroids

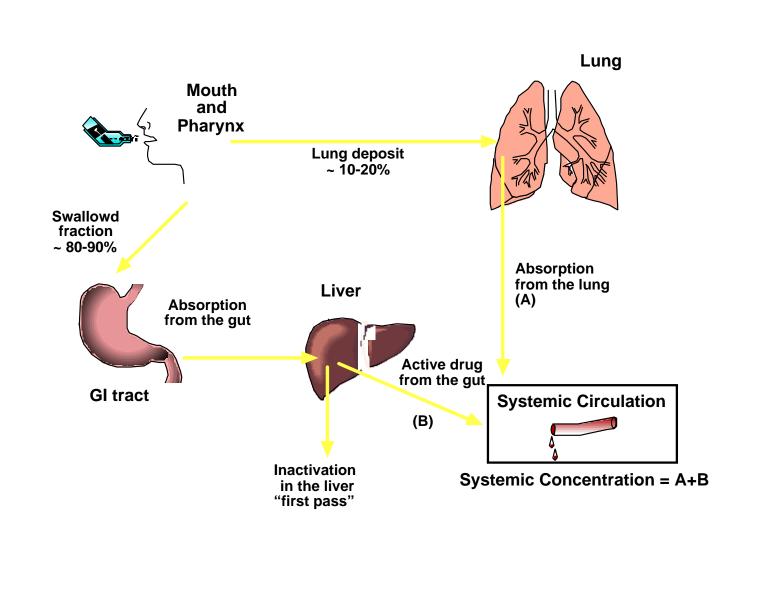
- Inhaled
 - Beclomethasone
 - Fluticasone
 - Triamcinolone
 - Budesonide
 - Flunisolide

Anti-inflammatory Effect of Glucocorticoid

Estimated Comparative Daily Dosages for Adults of Inhaled Corticosteroids

Drug	Low Dose	Medium Dose	High Dose
	Step 2	Step 3	Step 4
Beclomethasone	1-3 puffs	3-6 puffs	>6 puffs
	80 - 240 mcg	240 - 480 mcg	> 480 mcg
Budesonide DPI	1-3 puffs	3-6 puffs	> 6 puffs
	200 – 600 mcg	600 – 1,200 mcg	> 600 mcg
Flunisolide	2-4 puffs	4-8 puffs	> 8 puffs
	500–1,000 mcg	1,000–2,000 mcg	> 2,000 mcg
Fluticasone	2-6 puffs (44)	2-6 puffs (110)	> 6 puffs (110)
	88-264 mcg	264-660 mcg	> 660 mcg
Triamcinolone	4-10 puffs	10-20 puffs	> 20 puff
	400-1,000 mcg	1,000–2,000 mcg	> 2,000 mcg

Corticosteroid Side Effects


Inhaled Local

- Dysphonia
- Cough/throat irritation
- Thrush
- Impaired growth (high dose)?

Systemic (oral, IV)

- Fluid retention
- Muscle weakness
- Ulcers
- Malaise
- Impaired wound healing
- Nausea/Vomiting, HA
- Osteoporosis (adults)
- Cataracts (adults)
- Glaucoma (adults)

The Fate of Inhaled Steroids

CONTROLLERS

Long-acting Beta₂-agonists

- Salmeterol, Formoterol
 - Indication: Daily long-term control

Bronchodilate by long-term stimulation of beta₂ receptors

- Advantages
 - Blunt exercise induced symptoms for longer time
 - Decrease nocturnal symptoms
 - Improve quality of life
- Combination therapy beneficial when added to inhaled corticosteroids

Decrease the need to increase inhaled corticosteroid dose by dose

CONTROLLERS Long-acting Beta₂-agonists

- NOT for acute symptoms or exacerbations
 - Onset of effect \rightarrow 30 minutes
 - Peak effect \rightarrow 1-2 hours
 - Duration of effect \rightarrow up to 12 hours
- NOT a substitute for anti-inflammatory therapy
- NOT appropriate for monotherapy

Useful Beta Adrenergic Effects

- Relax bronchial smooth muscle
- Inhibit mediator release from mast cells, eosinophils, macrophages
- Decrease mucous secretion (submucosal gl)
- Increase mucociliary transport
- Inhibit bronchial oedema
- Inhibit cholinergic transmisssion
- Decrease airway hyperresponsiveness

CONTROLLERS Leukotriene Modifiers

- Cysteinyl Leukotriene Receptor Antagonists
 - Montelukast Once a day in PM indicated at age 1
 - Zafirlukast Twice daily Empty Stomach
 - Many drug interactions
- 5-Lipoxygenase inhibitors
 - Zileuton Four times daily
 - Many drug interactions

Add-on Controllers Leukotriene Modifiers

Montelukast

- Improves lung function and asthma control
- May protect against exercise induced bronchoconstriction
- Improves lung function when added to inhaled corticosteroids
- Not as effective as inhaled corticosteroids
- 4 mg, 5 mg chewable and 10 mg tablet
 - Once daily dosing (evening)
- Pediatric indication > 1 year
- No food restrictions

RELIEVERS Short-Acting Beta₂-agonist

- Salbutamol
- Pirbuterol
- Terbutaline
- levosalbutamol

RELIEVERS Short-Acting Beta₂-Agonists

- Most effective medication for relief of acute bronchospasm
- Preferably use inhaled rather than oral preparations
- Increased need for these medications indicates uncontrolled asthma (and inflammation)
- Regularly scheduled use not generally recommended use "as needed"
 - May lower effectiveness
 - May increase airway hyperresponsiveness

RELIEVERS Short-Acting Beta₂-Agonists

- Side Effects:
 - Increased Heart Rate
 - Palpitations
 - Nervousness
 - Sleeplessness
 - Headache
 - Tremor

Unwanted Beta Adrenergic Effects

- Hypokalemia (K shift into muscle tissue)
- Hyperglycemia (glycogenolysis)
- Hypoxia (pulmonary vasodilation causing increased ventilation/perfusion mismatch)

Oral Steroid Short Course

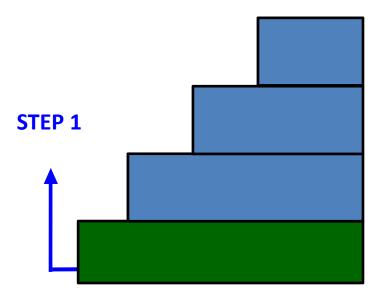
- Prednisone 30-40mg x 10-14 days for acute exacerbation of Asthma
- no weaning of dose unless long term use

Step 1 Treatment for Adults and Children > 5: Mild Intermittent

Controller – Daily

- Not needed

<u> Reliever – Quick Relief</u>


- Short-acting inhaled

beta₂-agonist

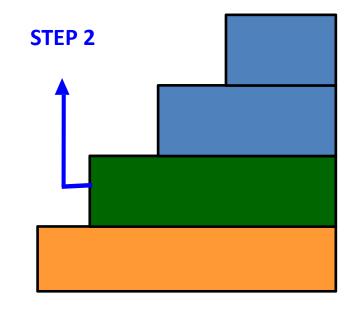
- Increasing use, or use more than

2x/week, may indicate need for longterm-control therapy

 Intensity of treatment depends on severity of exacerbation

Step 2 Treatment for Adults and Children > 5: Mild Persistent

Controller – Preferred Daily


- Low dose inhaled corticosteroid

Alternatives (alphabetically)

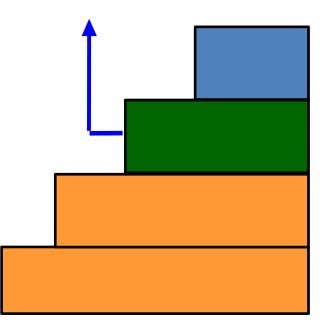
- Cromolyn, leukotriene modifier, nedocromil

OR

- Sustained-release theophylline to serum concentration of 5-15mcg/ml

Step 3 Treatment for Adults and Children > 5: Moderate Persistent

Controller – Preferred Daily


 Low to medium dose inhaled corticosteroid (medium dose) and long-acting beta₂-agonist

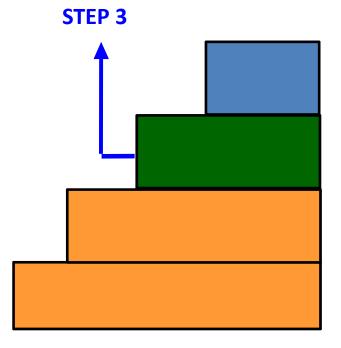
Alternatives (alphabetically)

 Increase inhaled corticosteroids to medium-dose range

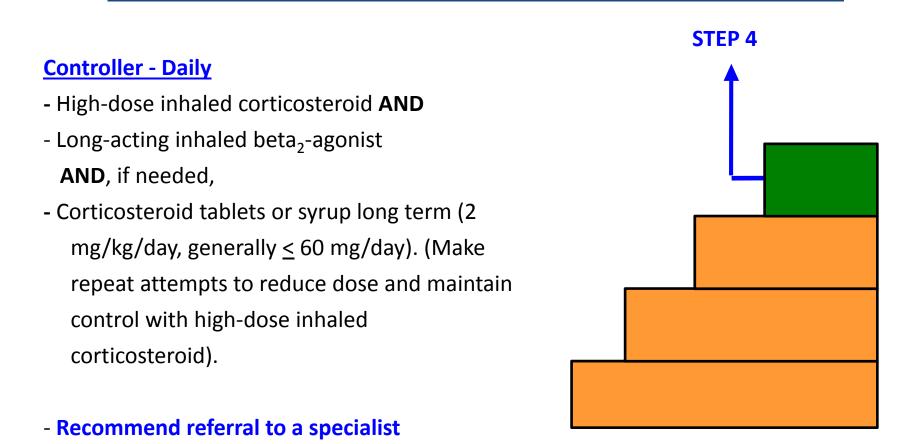
OR

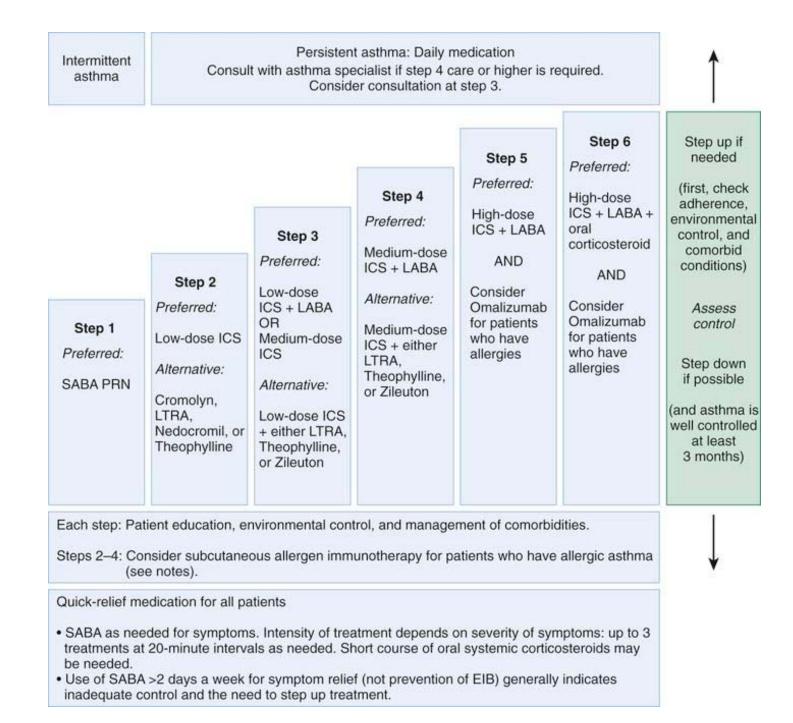
 Low to medium dose inhaled corticosteroid (medium dose) and either leukotriene modifier or theophylline **STEP 3**

Step 3 Treatment for Adults and Children > 5: Moderate Persistent

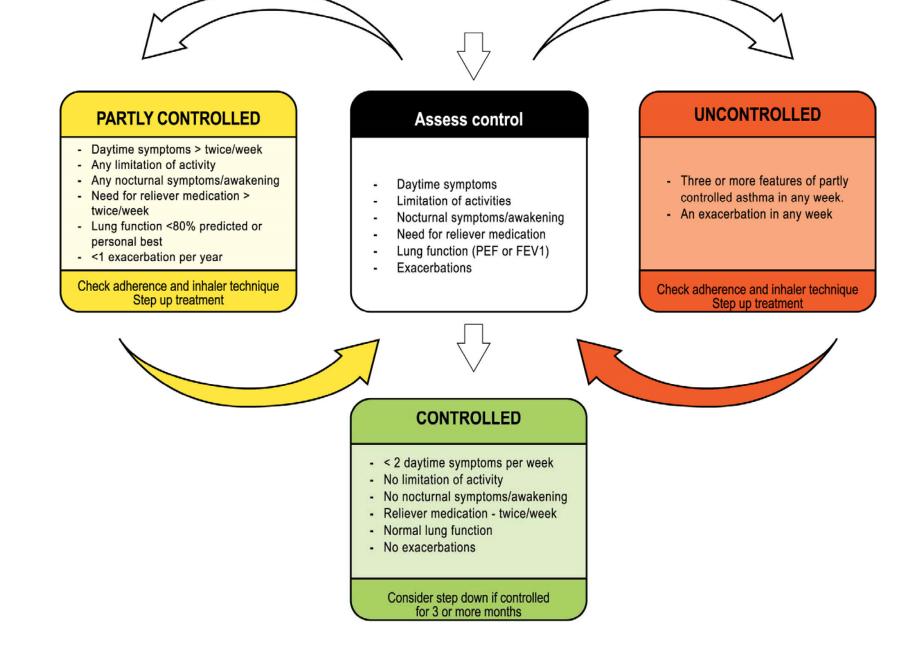

(patients with recurring severe exacerbations)

Controller – Preferred Daily


 Medium dose inhaled corticosteroid (medium dose) and long-acting beta₂agonist


Alternatives (alphabetically)

- Medium dose inhaled corticosteroid (medium dose) and either leukotriene modifier or theophylline
- Consider referral to a specialist



Step 4 Treatment for Adults and Children > 5: Severe Persistent

Monitor Asthma Control

Treating to Maintain Asthma Control

Stepping down treatment when asthma is controlled

- When controlled on medium- to high-dose inhaled glucocorticosteroids: 50% dose reduction at 3 month intervals (Evidence B)
- When controlled on low-dose inhaled glucocorticosteroids: switch to once-daily dosing (Evidence A)

Treating to Maintain Asthma Control

Stepping up treatment in response to loss of control

- Rapid-onset, short-acting or long-acting inhaled β2agonist bronchodilators provide temporary relief
- Need for repeated dosing over more than one/two days signals need for possible increase in controller therapy

Managing the well controlled patient

As soon as good control:

- Reduce oral steroids first, then stop
- Reduce relievers before controllers

When good control for 3+ months:

• Reduce inhaled steroids

Therapy to avoid!

- Sedatives & hypnotics
- Cough syrups
- Anti-histamines
- Immunosuppressive drugs
- Immunotherapy
- Maintenance oral prednisone >10mg/day

Managing partly/uncontrolled asthma

- Check the inhaler technique
- Check adherence and understanding of medication
- Consider aggravation by:
 - Exposure to triggers/allergens at home or work
 - Co-morbid conditions: GI reflux, rhinitis/sinusitis, cardiac problem
 - Medications: Beta-blockers, NSAIDs, Aspirin

The Asthma Action Plan

- Helps patients/caregivers manage asthma
 - Uses Peak Flows
 - Spells out medication instructions
- Green Zone 80-100% Peak Flow
- Yellow Zone 50-80% Peak Flow
- Red Zone Below 50% Peak Flow

Medication Delivery Demonstrations

- Breath Actuated Inhalers
- Metered Dose Inhalers with Spacer/Holding Chamber
- Dry Powder Inhalers
- Nebulizers

Advantages

Disadvantages

Small and portabledifficult to learn techniqueUnsuitable for children < 5-6</td>

pMDIs

Quick to use

Unsuitable for the elderly, Cold jet may irritate throat Limited amount of drug delivered per puff

Spacers and Holding Chambers

A spacer device enhances delivery by decreasing the velocity of the particles and reducing the number of large particles, allowing smaller particles of drug to be inhaled.

- A spacer device with a one-way valve, i.e., holding chamber, eliminates the need for the patient to coordinate actuation with inhalation and optimizes drug delivery.
- A simple spacer device without a valve requires coordination between inhalation and actuation.

DPIs

- Generally easier to use
- A minimal inspiratory flow rate is necessary to inhale from a DPI; difficult for some pts to use during an exacerbation
- More ecological than MDIs
- Storage may be difficult in humid climates

Nebulizer

Advantages

No Coordination required

Can be used for all ages Effective in severe asthma **Disadvantages**

Cumbersome

Expensive Noisy

Treatment takes time

Which inhalation device for which patient?

- Infants and children pMDI+spacer, nebulizer up 5 y/o
- Children 5-9 y/o pMDI+spacer, nebulizer, DPI

pMDI, DPI

 Competent older children and adults

 \bullet

- Incompetent older children/adults
 - pMDI+spacer, nebulizer

Key Messages

- Asthma is common-can happen to anybody
- Asthma can be effectively controlled, although it cannot be cured.
- Effective asthma management programs include education, objective measures of lung function, environmental control, and pharmacologic therapy.
- A stepwise approach to pharmacologic therapy is recommended.
- The aim is to accomplish the goals of therapy with the least possible medication.